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Proposition 0.1 (Exercise A.46). Let X,Y be topological spaces.
1. If f: X =Y is continuous and X is compact, then f(X) is compact.

2. If X s compact and f : X — R is continuous, then [ is bounded and attains its
mazimum and minimum values on X.

3. FEvery closed subset of a compact spaces is compact.
4. Bvery compact subset of a Hausdorff space is closed.

Proof. First we prove (1). Let f: X — Y be continuous and X be compact. Let {U,}aca
be an open cover of f(X). Then

CUU = (A (UU)

Since X C f~1(f(X)) and f~(f(X)) C X, these sets are equal. Note also that the preimage
of a union is the union of preimages, so

xclJr

Since f is continuous {f'(U,)}aca is an open cover of X. Since X is compact, there is a
finite subcover of X, {f(U;)}!,. Then

XCOfl(Ui ) = f(X Cf(Uf > Uf cUU

since f(f~!(U;)) C U; for each i. Thus {U;}?_, is an open cover for f(X). Hence every open
cover of f(X) can be reduced to a finite subcover, so f(X) is compact.

Now we prove (2). Let f : X — R be continuous and X be compact. Then by (1),
f(X) C R is compact. By the Heine-Borel theorem, f(X) is closed and bounded, thus f is
bounded. Since f(X) is closed, it includes all limit points, in particular, it includes sup f(X)
and inf f(X). Thus f attains its maximum and minimum values on X.
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Now we prove (3). Let X be a compact space and let C' C X be closed. Let {Up,}aca.
Then {U,} U (X \ C) is an open cover for X, so it has a finite subcover (by compactness of
X). Such a subcover must include at most finitely many U, ; index the remaining U, by i as
{U;}1,. We claim that {U;} is a cover for C| since the only other possible set in this finite
subcover for X is X \ C, which has empty intersection with C'. Hence C' C |J;_, U;. Hence
{U;} is a finite subcover of C' of the original cover {U,}, so any open cover of C' has a finite
subcover. Hence C' is compact.

Now we prove (4). Let X be a Hausdorff topological space, and let A C X be compact.
We will show that A is closed by showing that X \ A is open. Let x € X \ A. Then for
each a € A, there exist open neighborhoods U,, V, such that a € U,z € V,,U, NV, =0 (by
Hausdorff property of X). Then A C (J,c4 Uas 50 {Us,} is an open cover for A, so we can
find a finite subcover {U,,}, (by compactness of A). Let V = (_, Vo,. Then V and A are
disjoint, since

yeV = ViyeV, = ViygU, = y¢|JU, = y¢ A
Thus VN A = (. And V is open, since it is a finite intersection of open sets. Finally, V

contains X since each V, contains x. Hence V' is an open neighborhood of z contained within
X \ A. Since x was arbitrary, this means that X \ A is open, hence A is closed. O

Lemma 0.2 (for Exercise 1-3). Let ¢ : X — Y be an open, continuous, and surjective map
and B a basis for X. Then ¢(B) is a basis forY.

Proof. Let B = {B,}a € A. Then |J, B, = X and each U C X open can be expressed as
U,e; Bi- Then

Y=¢@>=¢OJBQ:4JMRJ

Thus the collection {¢(By)}aca covers Y. Let V C Y be open. Then ¢! (V) C X is open,
S0

o~ (V) =JBi

iel
¢w*Wﬁ=¢<UBJ
icl
vV =Jé(B)
iel
Thus V' can be written as a union of B;. O

Proposition 0.3 (Exercise 1-3). A locally Euclidean Hausdorff space is a topological mani-
fold if and only if it is o-compact.



Proof. First suppose that X is a topological manifold (then X is locally Euclidean and Haus-
dorff by definition). We need to express X as a union of countably many compact subspaces
to show that it is o-compact. By Lemma 1.10, X has a countable basis of precompact
coordinate balls, {U;}°,. For each i, the closure of U; is compact and contains U;, so the
collection {U;}2°, is a countable cover of X by compact subspaces. Hence X is o-compact.

Now suppose that X is a o-compact, locally Euclidean Hausdorff space. We must show
that X is second-countable, that is, we must find a countable basis for X. Since X is o-
compact, we can write X as a union of countably many compact subspaces, X = J;2; K;.
For each p € X, there is a local chart (U, ¢,) with p € U, and where U, is homeomorphic
to the unit ball in R (because X is locally Euclidean). For each i, the union (J,.x U, is an
open cover of K;, so we can find a finite subcover (because K; is compact),

K c Uy,
j=1
Since R™ is second-countable, there is a countable basis {B;;;}72, for each ¢;;(U;;) C R™.
Let Viji = (bZ_JI(BUk) Notice then that U;; C |J, Vije. We claim that
{‘/ijk : i;jak 2 1}
is a countable basis for X. It is clearly countable. Each Vj;;, is open since it is a preimage of
an open set in R™. It is not hard to see that they cover X, since

X:UKiCUUUi]’CUUUW]’k
i i g i j ok

Finally, we need to show that any open set O C X can be written as a union of V;j,. Let
O C X be open. For all 7, j, k, the set O NV}, is open because Vj;;, is open. Then the union

U (0N Vijr)

,L"j7k‘
is a union of open sets, which makes it open. It is obvious that this union is contained in O.
It also contains O, since the V;;; cover X. Thus we have

0 =J(OnViu)

irj,k
O
Proposition 0.4 (Exercise 1-7a). Let N = (0,0,...,1) € S® C R"*! denote the north pole
and S = (0,0,...,—1) be the south pole. We define the stereographic projection
g:S"\ N = R" by
1 n
L gy (@)
O'(QT oo L ) = W

and we define 6(z) = —o(—x) forx € S"\S. Then for any x € S"\ N, (o(x),0) is the point
where the line through N and x intersects the linear subspace where x" ™ = 0. Similarly,
7 (z) is the point where the line through S and x intersects the same subspace.
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Proof. To show this, we show that we can write (o(x),0) as a linear combination of x — N
and z. Let a = 2™ /(1 — 2™*1). Then as a preliminary, we calculate

atl=1—m
xn—i—l :L,n—l-l -1
CL({L‘n+1 _ 1) + xn—i—l — 1(_ anrl ) + .TTH_l _:L,n—i-l + .TTH_l — O

Now we can show that (¢(z),0) = a(x — N) + x.

a(r — N)+z =a(z',...

|
—
IS
+ -
=
&
e
=
_l_
=
8
\_3
2
S
3
+
—
|
=
+
S
3
+
=
~—

Thus z, N, and (o(x),0) are collinear, and clearly (c(z),0) is in the linear subspace where
"t =0.
Now we show that z, S, () are collinear. Now let a = —z"™! /(1 + 2"*!). Then

a+1=1/(1+2"")
_$n+1(1+xn+1

n+l _ —l‘n—H + xn—i—l =0
1 +xn+1

a(xn-i-l + 1) 4 CL’n+1 —

SO we can compute

alr — ) +x=a(z',.. 2"+ 1)+ (... 2™
= ((a+1z',... (a+ 12", a(a"' + 1) + ")
1 n n n
— W(xl,...x y,a(z™t +1) + 2 “)
~(&t,..2™0)
1 antt
= (=o(=x),0)
= (0(x),0)
Thus (6(z),0) is collinear with z, S. O

Proposition 0.5 (Exercise 1-7b). The stereographic projection o is a bijection, with inverse
o~ given by
(2z!,..., 22" |z[* = 1)

|z|2 + 1 B

ol z) =0z, .. .a") =

Proof. Let 0=! be as stated above. We will show that o o 0! and 07! o ¢ are the identity
on their respective domains. First, let € S™\ {0}. Let z = (2!,... 2" € S"\ {N}. As a
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preliminary calculation, we compute |o(z)|?, since this term arises in computing 0! o o(x).

(Note that |z| = 1 since z is on S™.)

s (@) + . 4 (a")?)
lo(z)]” = (1 — gnt1)2
()2 4 .o (27)2 4 (2712 — (2712

(]_ _ xn+1)2
|33| _ (xn+1)2
= A
1— (l,n+l)2
~ oy

1

Now we can compute o~ ' o g(z) directly.

o 100’([E) =0 ! ((1——1'”+1>>
(2,227 (o ()P — 1)1 — 2mt))
(lo(@)? + D1 = ant)
(221, ...,22™, (1 — 2"*!) — (1 — 2™))

(1*(zn+1)2 4 1) (1 . xn+1>

(1_xn+1)2
(22!, ... 22" 227!

= 1_(znt1)2
1£xn+1) + 1 —ant!

(22!, 227, 207!
— (17(xn+1)2+(17$n+1)2>

1—gzn+1

(221, ... 22"+

- 2_ogntl
( 1—gn+1 )

(221, ... 22"+
2
= (a',..., 2"
=

Thus 07! o ¢ is the identity on S™\ {N}. Now we will show that o o 0~ is the identity in



its domain. Let z = (z!,...2") C R™\ {0}. Then

2t ..., 22" 21
O'OO'_I(ZE):O' (JJ, ,I‘,|J?| )
|z[* +1

(221)...,2z")
(2 + (1 - Eah)
(221, 227)
a1 (2 - 1)
(221, ...,22")
2)

= (2. .. 2"
=

Thus o o 67! is the identity on R™ \ {0}. Hence ¢ is a bijection. O

Proposition 0.6 (Exercise 1.17c). The atlas consisting of the two charts 0,6 defines a
smooth structure on S™.

Proof. To show this, we just need to compute the transition map oo~ : R"\{0} — R™\{0}.

1 n 2 _
oo l(ul,. . u") =& (2ut, ... 2u™ |ul® — 1)
lul2 + 1

. ((_1) ((2u1, . |u|22u+ |1u|2 - 1)))

(2ul, ..., 2u")

Thus this transition map is a diffeomorphism, with itself being the inverse, because

u_ u_
wwﬂwwoawm=6wl<u>:'2fzfzu
2

|ul? u

Thus o, are compatible charts that cover S™, so they are a smooth atlas. By Proposition
1.17, we can extend this atlas to a maximal smooth atlas, which give a smooth structure on
ST, m

Proposition 0.7 (Exercise 1-7d). The smooth structure on S™ induced by the stereographic
projection (and the projection excluding the south pole) is the same as the structure induced
by the charts {UF} given in Evample 1.31.



Proof. We just need to show that the union of these two smooth atlases is a smooth atlas;
that is, we need to show that the stereographic projection ¢ and the other projection ¢ are
compatible with the charts {Uii, gzﬁli} To do this, we need to show that the transition maps
oo () ofoo ! 5o (¢Ff)", and ¢ o 5! are all smooth. We will just show that these
are smooth for the charts U;", but essentially the same calculations hold for U, .

First, let © = (2',...2") € X (U, N S™\ N).

oo (65 (@) = ola e (= P
(@ (= )2 Y
B 1—an

This is smooth as long as ™ # 1, but 2" # 1 on the domain because the north pole N is
excluded. Thus o o (¢)~! is smooth. Now let z = ¢ (U;" N .S™\ {S}).

go(pH) Lzt . 2") = —o(=2!,... — 2" —(1 — |z[H)Y?, 2t ... —2")
(—zt, .. =z —(1 = |22, —at, ... —a Y

1+ axn

This is smooth as long as ™ # —1, but this possibility is excluded because the south pole is
not in the domain. Thus & o (¢)~! is smooth. Now let 2 € o(U;¥ N .S™\ {N}).

(221, ..., 22", |z|? — 1))

¢foa4@>=¢f(

[z +1
22t 22 220 L 22 | — 1)
|z|2 + 1

This is smooth as long as |z|? # —1, but |z|> > 0. Thus ¢ o 0~! is smooth. Finally, let
r €U NS™\ {S}).

¢; 06 (x) = ¢ (—o ! (~x))
_ ot (=) =2zt =22 |x|? — 1
Z PEES
(21, ... 227 220 L 22 —|x2 + 1)
|z|2 4+ 1

This is also smooth as long as |z|* # —1, it is smooth on its whole domain.
We have shown that each chart (U;", ¢F) is compatible with the charts (o, S"\{N}), (&, S™\
{S}). These arguments easily extend to show compatibility of (U, ¢) with ¢, &. Thus the

smooth atlases are compatible, so they induce the same smooth structure by Proposition
1.17b. O

Proposition 0.8 (Exercise 1-8). Let U C S*. There exists an angle function 6 : U — R
satisfying ) = z for = € U if and only if U # S*. Furthermore, when such an angle
function exists, (U, 0) is a smooth coordinate chart for S* with its standard smooth structure.



Proof. First suppose that U = S'. Then U is connected and locally path-connected. Let
7 : R — S! be the covering map ¢ — > and let « : U < S* be the inclusion map (note
that ¢ is continuous). Then the induced homomorphism 7, : m(R) — m;(S?) is trivial,
since it maps the trivial group into Z. Since ¢ is actually the identity map, it induces an
isomorphism ¢, : m (U) — 71(S1), s0 1.(m(U)) = Z.

Hence the inclusion ¢, (m(U)) C m.(m(R)) fails, so by Proposition A.78 (Lifting Crite-
rion), there does not exist a continuous function 6 : U — R such that (1) = 1, and hence
no such @ such that ) = 1. (If ) = 1, then we must have (1) = 27k for some k € Z,
and 27k is can only be a real scalar multiple of 7 if k¥ = 0, hence §(1) must be zero to satisfy
¢ = 1.) Thus if U = S, then no angle function exists.

Now suppose that U # S! is an open subset not equal to S'. We must construct a
continuous function 6 : U — R. Let py € S'\ U. Then there exists (not unique) ¢y € R such
that e = py. Then for every p € S\ {po}, there exists a unique ¢ € (tg,ty + 27) such that
e = p. Set A(p) = t, so we have defined a function 6 : S*\ {py} — R, and by construction,
¢?®) = ¢it — . We can then set § =6y : U — R.

We need to show that € is continuous. Let (x,,)°2; be a sequence in U with limit x € U,
that is, x, — z. Set t, = 0(z,) and t = 6(z). Then z,, = e¢'» and z = . Suppose (as an
RAA hypothesis) that ¢, does not converge to t. Since t,, € (tg,to + 27), t, is a bounded
sequence, so by the Bolzano-Weierstrass Theorem, t,, has a convergent subsequence t,,, , with
limit s # ¢. Since s € [tg,to + 27] and t € (to,to + 27) and s # ¢, it follows that e’ # e*.
But since t,, — s, we have e''"= — €'*. Then since z,, = e'"x we have x,, — € # z. This
is a contradiction, since x, — z and z, has a unique limit (by Exercise A.11). Thus 6 is
continuous.

Now we show that any continuous angle function 8 : U — R is a smooth coordinate chart
for S with it standard smooth structure. Let # : U — R be an angle function, that is,
e®®) = p for p € U. Then 0 must be injective, because

0(p) =0(q) = "V =e"D — p=ygq

Furthermore, for x € 8(U), 6(e) = O(cosx + isinz) =z, s0 7 (z) = €. Let 0 : S' - R
be the stereographic projection given by xy + ixze = (21, x2) — 13&2. Then we compute the
transition maps 00 07! : (U) — o(U), oo™ : a(U) — 6(U).

g0l (z) =o(cosx +ising) = f&
—sinx

1y o @rar—-1)\ 2z -1\ (2?1
boo <x)_0< (22 +1 =0 2l ) T 27

Both of these are diffeomorphisms on 0(U) C (to, %y + 27), hence 6 is a smooth coordinate
chart for S' with its standard smooth structure. O

Lemma 0.9 (for Exercise 1-9). The natural projection m : C*** — CP" is an open map.

Proof. Let U C C™"*! be open. First we claim that for A\ € C with A # 0, the dilation AU,
defined as

AU ={ u:ueU}



is open. Let z € A\U. Then z = A\w for some w € U. Since U is open, there exists ¢ > 0 such
that B(w,e) C U. We claim that B(z, |A\|e) C AU. To see this, let ¢ € B(z,|A|€), so then

lc—z| =|c = dw| = [Mc/A —w)| = |A\]|c/A —w| < [Me = |¢/A—w| <e¢
Thus
c¢/A € B(w,e) CU = Ac/\) =cC U

so we establish B(z,|Ale) C AU, and thus AU is open. Now we claim that

(@)= (J WU

AeC\{0}

Let 2 € m~(7(U)). Then 7(z) = 7(w) for some w € U, and thus z = A\w for some A\, hence
7Y (m(U)) is contained in the union of all A\U. Now suppose that z € AU. Then z = \w for
some w € U, so 7(z) = m(w), so z € 7 ! (7(w)), hence z € 7~ }(w(U)). Thus we have two
way containment, so these sets are equal.

We already showed that each AU is open, so the union is open. Hence 7~ !(7(U)) is open
for every open U C C™"!. Since 7 is continuous, 7~!(X) is open if and only if X is open, so
74w (U)) open implies 7(U) open. Hence 7(U) is open for every U C C"™ open, so 7 is
an open map. ]

Proposition 0.10 (Exercise 1-9). CP" is a compact 2n-dimensional topological manifold,
and we can give it a smooth structure.

Proof. Let w: C"*! — CP" be the natural projection. First CP" is compact because it is the
image of S?"*! under 7. Since 7 is continuous, and S?"*! is compact, its image is compact
under 7.

Showing that CP" is Hausdorff is beyond the machinery we have so far developed in
class. I invoke a theorem of Bourbaki: If G is a compact Hausdorff group and X is a
locally compact Hausdorff space, such that G acts continuously on X, then the orbit space
X/G is Hausdorff. T assert that (C\ {0}, *) is a compact Hausdorff group, and C"*! is a
locally compact Hausdorff space, and CP" is the orbit space C"*!/(C \ {0}, ). Hence CP"
is Hausdorff.

Now we show that CP" is second-countable. We know that C"*! is second-countable, so
it has a countable basis B. As shown in the previous lemma, the projection 7 : C**! — CP»
is an open map. It is also continuous and surjective, so by Lemma 0.2, 7(B) is a countable
basis for CP".

Now we show that CP" is locally Euclidean of dimension 2n. For ¢ = 1,...n + 1, let
U, € C™! be the set

U ={(z,...2"" 240}
and define U; = W(Ul) C CP". Because U, is a saturated open set, U; is open and g, U, —
U; is a quotient map. Define ¢; : U; — C" by
1 i—1 i+l

¢i[z] = gil2t, ... 2" = (Z_ M’Z ' ’Z . ’mz"fl)

2t 2 2




The map ¢; is well defined, because ¢;[az] = ¢;[z] for a € C\ {0}, as the following calculation

shows.
1 i—1 i+1 n+1
az az

az az

azt’ 7 azt 7 oazt ] azt

¢ilaz] = ¢ilazt, ... az"] = (

Furthermore, ¢; o (7[g,) : U, — C" is continuous, so ¢; is continuous by Theorem A.27.
Actually, ¢; is a homeomorphism, because it has the continuous inverse

ot (2. ) =[]

To verify that these are inverses, notice that
piop (2t . M) =gl 2T = (R T 2

1 i1 it1 n+1
_ _ z z z z
(bilogbi[zl’,..zn—l-l]:gbil(—,7..., — — ... - )

2t A A A
1 Sl i it ontl
:{;’ i i i zz]
[(Zl,...znﬂ)]
i
— [Zl, 'Zn—l-l]

Since the sets Uy, ... U,4+1 cover CP", this shows that every point in CP" has a neighborhood
U; that is homeomorphic to ¢(U;) C C™. But the identification
¥ (2t iyt " iy = (2 Yt ey

is a homeomorphism between C" and R?". Let W; = ¢;on(U;). Then ¢;01) : U; — W; C R*"
is a homeomorphism. Since the collection of U; cover CIP", this shows that CPP" is locally
Euclidean of dimension 2n.

Now we show how to put a smooth structure on CP". As shown above, (U;, ¢; o ¢) are
charts for CP". We just need to show that the transition map (¢; o ¢) o (¢; 0 )~ is a
diffeomorphism.

(¢iop)o(pjoh) ) =gotpoy ™ og;t =gi0p;"

This composition, ¢; o gbj_l, is shown to be a diffeomorphism in Example 1.33 of Lee. O
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