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Proposition 0.1 (Exercise A.46). Let X, Y be topological spaces.

1. If f : X → Y is continuous and X is compact, then f(X) is compact.

2. If X is compact and f : X → R is continuous, then f is bounded and attains its
maximum and minimum values on X.

3. Every closed subset of a compact spaces is compact.

4. Every compact subset of a Hausdorff space is closed.

Proof. First we prove (1). Let f : X → Y be continuous and X be compact. Let {Uα}α∈A
be an open cover of f(X). Then

f(X) ⊂
⋃
α

Uα =⇒ f−1(f(X)) ⊂ f−1

(⋃
α

Uα

)

Since X ⊂ f−1(f(X)) and f−1(f(X)) ⊂ X, these sets are equal. Note also that the preimage
of a union is the union of preimages, so

X ⊂
⋃
α

f−1(Uα)

Since f is continuous {f−1(Uα)}α∈A is an open cover of X. Since X is compact, there is a
finite subcover of X, {f(Ui)}ni=1. Then

X ⊂
n⋃
i=1

f−1(Ui) =⇒ f(X) ⊂ f

(
n⋃
i=1

f−1(Ui))

)
=

n⋃
i=1

f(f−1(Ui)) ⊂
n⋃
i=1

Ui

since f(f−1(Ui)) ⊂ Ui for each i. Thus {Ui}ni=1 is an open cover for f(X). Hence every open
cover of f(X) can be reduced to a finite subcover, so f(X) is compact.

Now we prove (2). Let f : X → R be continuous and X be compact. Then by (1),
f(X) ⊂ R is compact. By the Heine-Borel theorem, f(X) is closed and bounded, thus f is
bounded. Since f(X) is closed, it includes all limit points, in particular, it includes sup f(X)
and inf f(X). Thus f attains its maximum and minimum values on X.
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Now we prove (3). Let X be a compact space and let C ⊂ X be closed. Let {Uα}α∈A.
Then {Uα} ∪ (X \ C) is an open cover for X, so it has a finite subcover (by compactness of
X). Such a subcover must include at most finitely many Uα; index the remaining Uα by i as
{Ui}ni=1. We claim that {Ui} is a cover for C, since the only other possible set in this finite
subcover for X is X \ C, which has empty intersection with C. Hence C ⊂

⋃n
i=1 Ui. Hence

{Ui} is a finite subcover of C of the original cover {Uα}, so any open cover of C has a finite
subcover. Hence C is compact.

Now we prove (4). Let X be a Hausdorff topological space, and let A ⊂ X be compact.
We will show that A is closed by showing that X \ A is open. Let x ∈ X \ A. Then for
each a ∈ A, there exist open neighborhoods Ua, Va such that a ∈ Ua, x ∈ Va, Ua ∩ Va = ∅ (by
Hausdorff property of X). Then A ⊂

⋃
a∈A Ua, so {Ua} is an open cover for A, so we can

find a finite subcover {Uai}ni=1 (by compactness of A). Let V =
⋂n
i=1 Vai . Then V and A are

disjoint, since

y ∈ V =⇒ ∀i, y ∈ Vai =⇒ ∀i, y 6∈ Uai =⇒ y 6∈
⋃
i

Uai =⇒ y 6∈ A

Thus V ∩ A = ∅. And V is open, since it is a finite intersection of open sets. Finally, V
contains X since each Va contains x. Hence V is an open neighborhood of x contained within
X \ A. Since x was arbitrary, this means that X \ A is open, hence A is closed.

Lemma 0.2 (for Exercise 1-3). Let φ : X → Y be an open, continuous, and surjective map
and B a basis for X. Then φ(B) is a basis for Y .

Proof. Let B = {Bα}α ∈ A. Then
⋃
αBα = X and each U ⊂ X open can be expressed as⋃

i∈I Bi. Then

Y = φ(X) = φ

(⋃
α

Bα

)
=
⋃
α

φ(Bα)

Thus the collection {φ(Bα)}α∈A covers Y . Let V ⊂ Y be open. Then φ−1(V ) ⊂ X is open,
so

φ−1(V ) =
⋃
i∈I

Bi

φ(φ−1(V )) = φ

(⋃
i∈I

Bi

)
V =

⋃
i∈I

φ(Bi)

Thus V can be written as a union of Bi.

Proposition 0.3 (Exercise 1-3). A locally Euclidean Hausdorff space is a topological mani-
fold if and only if it is σ-compact.
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Proof. First suppose that X is a topological manifold (then X is locally Euclidean and Haus-
dorff by definition). We need to express X as a union of countably many compact subspaces
to show that it is σ-compact. By Lemma 1.10, X has a countable basis of precompact
coordinate balls, {Ui}∞i=1. For each i, the closure of Ui is compact and contains Ui, so the
collection {Ui}∞i=1 is a countable cover of X by compact subspaces. Hence X is σ-compact.

Now suppose that X is a σ-compact, locally Euclidean Hausdorff space. We must show
that X is second-countable, that is, we must find a countable basis for X. Since X is σ-
compact, we can write X as a union of countably many compact subspaces, X =

⋃∞
i=1Ki.

For each p ∈ X, there is a local chart (Up, φp) with p ∈ Up and where Up is homeomorphic
to the unit ball in Rn (because X is locally Euclidean). For each i, the union

⋃
p∈X Up is an

open cover of Ki, so we can find a finite subcover (because Ki is compact),

Ki ⊂
n⋃
j=1

Uij

Since Rn is second-countable, there is a countable basis {Bijk}∞k=1 for each φij(Uij) ⊂ Rn.
Let Vijk = φ−1ij (Bijk). Notice then that Uij ⊂

⋃
k Vijk. We claim that

{Vijk : i, j, k ≥ 1}

is a countable basis for X. It is clearly countable. Each Vijk is open since it is a preimage of
an open set in Rn. It is not hard to see that they cover X, since

X =
⋃
i

Ki ⊂
⋃
i

⋃
j

Uij ⊂
⋃
i

⋃
j

⋃
k

Vijk

Finally, we need to show that any open set O ⊂ X can be written as a union of Vijk. Let
O ⊂ X be open. For all i, j, k, the set O∩ Vijk is open because Vijk is open. Then the union⋃

i,j,k

(O ∩ Vijk)

is a union of open sets, which makes it open. It is obvious that this union is contained in O.
It also contains O, since the Vijk cover X. Thus we have

O =
⋃
i,j,k

(O ∩ Vijk)

Proposition 0.4 (Exercise 1-7a). Let N = (0, 0, . . . , 1) ∈ Sn ⊂ Rn+1 denote the north pole
and S = (0, 0, . . . ,−1) be the south pole. We define the stereographic projection
σ : Sn \N → Rn by

σ(x1, . . . xn+1) =
(x1, . . . xn)

1− xn+1

and we define σ̃(x) = −σ(−x) for x ∈ Sn \S. Then for any x ∈ Sn \N , (σ(x), 0) is the point
where the line through N and x intersects the linear subspace where xn+1 = 0. Similarly,
σ̃(x) is the point where the line through S and x intersects the same subspace.
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Proof. To show this, we show that we can write (σ(x), 0) as a linear combination of x −N
and x. Let a = xn+1/(1− xn+1). Then as a preliminary, we calculate

a+ 1 =
1

1− xn+1

a(xn+1 − 1) + xn+1 =
xn+1(xn+1 − 1)

1− xn+1
+ xn+1 = −xn+1 + xn+1 = 0

Now we can show that (σ(x), 0) = a(x−N) + x.

a(x−N) + x = a(x1, . . . xn+1 − 1) + (x1, . . . xn+1)

=
(
(a+ 1)x1, . . . (a+ 1)xn, a(xn+1 − 1) + xn+1

)
=

(
1

1− xn+1
(x1, . . . xn), 0

)
= (σ(x), 0)

Thus x,N , and (σ(x), 0) are collinear, and clearly (σ(x), 0) is in the linear subspace where
xn+1 = 0.

Now we show that x, S, σ̃(x) are collinear. Now let a = −xn+1/(1 + xn+1). Then

a+ 1 = 1/(1 + xn+1)

a(xn+1 + 1) + xn+1 =
−xn+1(1 + xn+1

1 + xn+1
+ xn+1 = −xn+1 + xn+1 = 0

so we can compute

a(x− S) + x = a(x1, . . . xn+1 + 1) + (x1, . . . xn+1)

=
(
(a+ 1)x1, . . . (a+ 1)xn, a(xn+1 + 1) + xn+1

)
=

(
1

1 + xn+1
(x1, . . . xn), a(xn+1 + 1) + xn+1

)
=

(x1, . . . xn, 0)

1 + xn+1

= (−σ(−x), 0)

= (σ̃(x), 0)

Thus (σ̃(x), 0) is collinear with x, S.

Proposition 0.5 (Exercise 1-7b). The stereographic projection σ is a bijection, with inverse
σ−1 given by

σ−1(x) = σ−1(x1, . . . xn) =
(2x1, . . . , 2xn, |x|2 − 1)

|x|2 + 1
=

Proof. Let σ−1 be as stated above. We will show that σ ◦ σ−1 and σ−1 ◦ σ are the identity
on their respective domains. First, let x ∈ Sn \ {0}. Let x = (x1, . . . xn+1 ∈ Sn \ {N}. As a
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preliminary calculation, we compute |σ(x)|2, since this term arises in computing σ−1 ◦ σ(x).
(Note that |x| = 1 since x is on Sn.)

|σ(x)|2 =
(x1)2 + . . .+ (xn)2)

(1− xn+1)2

=
(x1)2 + . . .+ (xn)2 + (xn+1)2 − (xn+1)2

(1− xn+1)2

=
|x| − (xn+1)2

(1− xn+1)2

=
1− (xn+1)2

(1− xn+1)2

Now we can compute σ−1 ◦ σ(x) directly.

σ−1 ◦ σ(x) = σ−1
(

(x1, . . . xn)

1− xn+1

)
=

(
2x1, . . . , 2xn, (|σ(x)|2 − 1)(1− xn+1)

)
(|σ(x)|2 + 1)(1− xn+1)

=

(
2x1, . . . , 2xn, (1− xn+1)− (1− xn+1)

)(
1−(xn+1)2

(1−xn+1)2
+ 1
)

(1− xn+1)

=
(2x1, . . . 2xn, 2xn+1

1−(xn+1)2

1−xn+1 + 1− xn+1

=
(2x1, . . . 2xn, 2xn+1(
1−(xn+1)2+(1−xn+1)2

1−xn+1

)
=

(2x1, . . . 2xn+1)(
2−2xn+1

1−xn+1

)
=

(2x1, . . . 2xn+1)

2
= (x1, . . . , xn+1)

= x

Thus σ−1 ◦ σ is the identity on Sn \ {N}. Now we will show that σ ◦ σ−1 is the identity in
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its domain. Let x = (x1, . . . xn) ⊂ Rn \ {0}. Then

σ ◦ σ−1(x) = σ

(
(2x1, . . . , 2xn, |x|2 − 1)

|x|2 + 1

)
=

(2x1, . . . , 2xn)

(|x|2 + 1)(1− |x|2−1|x|2+1
)

=
(2x1, . . . , 2xn)

|x|2 + 1− (|x|2 − 1)

=
(2x1, . . . , 2xn)

2)

= (x1, . . . xn)

= x

Thus σ ◦ σ−1 is the identity on Rn \ {0}. Hence σ is a bijection.

Proposition 0.6 (Exercise 1.17c). The atlas consisting of the two charts σ, σ̃ defines a
smooth structure on Sn.

Proof. To show this, we just need to compute the transition map σ̃◦σ−1 : Rn\{0} → Rn\{0}.

σ̃ ◦ σ−1(u1, . . . un) = σ̃

(
(2u1, . . . , 2un, |u|2 − 1)

|u|2 + 1

)
= −σ

(
(−1)

(
(2u1, . . . , 2un, |u|2 − 1)

|u|2 + 1

))
= −σ

(
(2u1, . . . , 2un, |u|2 − 1)

−|u|2 − 1

)
= − (2u1, . . . , 2un)

(|u|2 + 1) + (|u|2 − 1)

=
(2u1, . . . , 2un)

2|u|2

=
u

|u|2

Thus this transition map is a diffeomorphism, with itself being the inverse, because

(σ̃ ◦ σ−1) ◦ (σ̃ ◦ σ−1)(u) = σ̃ ◦ σ−1
(

u

|u|2

)
=

u
|u|2∣∣∣ u
|u|2

∣∣∣2 =

u
|u|2
1
|u|2

= u

Thus σ, σ̃ are compatible charts that cover Sn, so they are a smooth atlas. By Proposition
1.17, we can extend this atlas to a maximal smooth atlas, which give a smooth structure on
Sn.

Proposition 0.7 (Exercise 1-7d). The smooth structure on Sn induced by the stereographic
projection (and the projection excluding the south pole) is the same as the structure induced
by the charts {U±i } given in Example 1.31.
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Proof. We just need to show that the union of these two smooth atlases is a smooth atlas;
that is, we need to show that the stereographic projection σ and the other projection σ̃ are
compatible with the charts {U±i , φ±i }. To do this, we need to show that the transition maps
σ ◦ (φ±i )−1, φ±i ◦ σ−1, σ̃ ◦ (φ±i )−1, and φ±i ◦ σ̃−1 are all smooth. We will just show that these
are smooth for the charts U+

i , but essentially the same calculations hold for U−i .
First, let x = (x1, . . . xn) ∈ φ±i (U+

i ∩ Sn \N).

σ ◦ (φ±i )−1(x1, . . . , xn) = σ(x1, . . . , xi−1, (1− |x|2)1/2, xi, . . . xn)

=
(x1, . . . xi−1, (1− |x|2)1/2, xi, . . . xn−1)

1− xn

This is smooth as long as xn 6= 1, but xn 6= 1 on the domain because the north pole N is
excluded. Thus σ ◦ (φ±i )−1 is smooth. Now let x = φ±i (U+

i ∩ Sn \ {S}).

σ̃ ◦ (φ±i )−1(x1, . . . xn) = −σ(−x1, . . .− xi−1,−(1− |x|2)1/2,−xi, . . .− xn)

= (−1)
(−x1, . . . ,−xi−1,−(1− |x|2)1/2,−xi, . . . ,−xn−1)

1 + xn

This is smooth as long as xn 6= −1, but this possibility is excluded because the south pole is
not in the domain. Thus σ̃ ◦ (φ±i )−1 is smooth. Now let x ∈ σ(U+

i ∩ Sn \ {N}).

φ±i ◦ σ−1(x) = φ±i

(
(2x1, . . . , 2xn, |x|2 − 1)

|x|2 + 1

)
=

(2x1, . . . , 2xi−1, 2xi+1, . . . , 2xn, |x|2 − 1)

|x|2 + 1

This is smooth as long as |x|2 6= −1, but |x|2 ≥ 0. Thus φ±i ◦ σ−1 is smooth. Finally, let
x ∈ σ̃(U+

i ∩ Sn \ {S}).

φ±i ◦ σ̃−1(x) = φ±i (−σ−1(−x))

= φ±i

(
(−1)

−2x1, . . . ,−2xn, |x|2 − 1

|x|2 + 1

)
=

(2x1, . . . , 2xi−1, 2xi+1, . . . , 2xn,−|x|2 + 1)

|x|2 + 1

This is also smooth as long as |x|2 6= −1, it is smooth on its whole domain.
We have shown that each chart (U+

i , φ
±
i ) is compatible with the charts (σ, Sn\{N}), (σ̃, Sn\

{S}). These arguments easily extend to show compatibility of (U−i , φ
±
i ) with σ, σ̃. Thus the

smooth atlases are compatible, so they induce the same smooth structure by Proposition
1.17b.

Proposition 0.8 (Exercise 1-8). Let U ⊂ S1. There exists an angle function θ : U → R
satisfying eiθ(z) = z for z ∈ U if and only if U 6= S1. Furthermore, when such an angle
function exists, (U, θ) is a smooth coordinate chart for S1 with its standard smooth structure.
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Proof. First suppose that U = S1. Then U is connected and locally path-connected. Let
π : R → S1 be the covering map t 7→ e2πit, and let ι : U ↪→ S1 be the inclusion map (note
that ι is continuous). Then the induced homomorphism π∗ : π1(R) → π1(S

1) is trivial,
since it maps the trivial group into Z. Since ι is actually the identity map, it induces an
isomorphism ι∗ : π1(U)→ π1(S

1), so ι∗(π1(U)) = Z.
Hence the inclusion ι∗(π1(U)) ⊂ π∗(π1(R)) fails, so by Proposition A.78 (Lifting Crite-

rion), there does not exist a continuous function θ : U → R such that θ(1) = 1, and hence
no such θ such that eiθ(1) = 1. (If eiθ(1) = 1, then we must have iθ(1) = 2πk for some k ∈ Z,
and 2πk is can only be a real scalar multiple of i if k = 0, hence θ(1) must be zero to satisfy
eiθ(1) = 1.) Thus if U = S1, then no angle function exists.

Now suppose that U 6= S1 is an open subset not equal to S1. We must construct a
continuous function θ : U → R. Let p0 ∈ S1 \U . Then there exists (not unique) t0 ∈ R such
that eit0 = p0. Then for every p ∈ S1 \ {p0}, there exists a unique t ∈ (t0, t0 + 2π) such that
eit = p. Set θ̃(p) = t, so we have defined a function θ̃ : S1 \ {p0} → R, and by construction,

eiθ̃(p) = eit = p. We can then set θ = θ̃U : U → R.
We need to show that θ is continuous. Let (xn)∞n=1 be a sequence in U with limit x ∈ U ,

that is, xn → x. Set tn = θ(xn) and t = θ(x). Then xn = eitn and x = eit. Suppose (as an
RAA hypothesis) that tn does not converge to t. Since tn ∈ (t0, t0 + 2π), tn is a bounded
sequence, so by the Bolzano-Weierstrass Theorem, tn has a convergent subsequence tnk

, with
limit s 6= t. Since s ∈ [t0, t0 + 2π] and t ∈ (t0, t0 + 2π) and s 6= t, it follows that eis 6= eit.
But since tnk

→ s, we have eitnk → eis. Then since xnk
= eitnk , we have xnk

→ eis 6= x. This
is a contradiction, since xn → x and xn has a unique limit (by Exercise A.11). Thus θ is
continuous.

Now we show that any continuous angle function θ : U → R is a smooth coordinate chart
for S1 with it standard smooth structure. Let θ : U → R be an angle function, that is,
eiθ(p) = p for p ∈ U . Then θ must be injective, because

θ(p) = θ(q) =⇒ eiθ(p) = eiθ(q) =⇒ p = q

Furthermore, for x ∈ θ(U), θ(eix) = θ(cosx + i sinx) = x, so θ−1(x) = eix. Let σ : S1 → R
be the stereographic projection given by x1 + ix2 = (x1, x2) 7→ x1

1−x2 . Then we compute the

transition maps σ ◦ θ−1 : θ(U)→ σ(U), θ ◦ σ−1 : σ(U)→ θ(U).

σ ◦ θ−1(x) = σ(cosx+ i sinx) =
cosx

1− sinx

θ ◦ σ−1(x) = θ

(
(2x, x2 − 1)

(x2 + 1

)
= θ

(
2x

x2 + 1
+ i

x2 − 1

x2 + 1

)
= tan−1

(
x2 − 1

2x

)
Both of these are diffeomorphisms on θ(U) ⊂ (t0, t0 + 2π), hence θ is a smooth coordinate
chart for S1 with its standard smooth structure.

Lemma 0.9 (for Exercise 1-9). The natural projection π : Cn+1 → CPn is an open map.

Proof. Let U ⊂ Cn+1 be open. First we claim that for λ ∈ C with λ 6= 0, the dilation λU ,
defined as

λU = {λu : u ∈ U}
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is open. Let z ∈ λU . Then z = λω for some ω ∈ U . Since U is open, there exists ε > 0 such
that B(ω, ε) ⊂ U . We claim that B(z, |λ|ε) ⊂ λU . To see this, let c ∈ B(z, |λ|ε), so then

|c− z| = |c− λω| = |λ(c/λ− ω)| = |λ||c/λ− ω| < |λ|ε =⇒ |c/λ− ω| < ε

Thus

c/λ ∈ B(ω, ε) ⊂ U =⇒ λ(c/λ) = c ⊂ λU

so we establish B(z, |λ|ε) ⊂ λU , and thus λU is open. Now we claim that

π−1(π(U)) =
⋃

λ∈C\{0}

λU

Let z ∈ π−1(π(U)). Then π(z) = π(ω) for some ω ∈ U , and thus z = λω for some λ, hence
π−1(π(U)) is contained in the union of all λU . Now suppose that z ∈ λU . Then z = λω for
some ω ∈ U , so π(z) = π(ω), so z ∈ π−1(π(ω)), hence z ∈ π−1(π(U)). Thus we have two
way containment, so these sets are equal.

We already showed that each λU is open, so the union is open. Hence π−1(π(U)) is open
for every open U ⊂ Cn+1. Since π is continuous, π−1(X) is open if and only if X is open, so
π−1(π(U)) open implies π(U) open. Hence π(U) is open for every U ⊂ Cn+1 open, so π is
an open map.

Proposition 0.10 (Exercise 1-9). CPn is a compact 2n-dimensional topological manifold,
and we can give it a smooth structure.

Proof. Let π : Cn+1 → CPn be the natural projection. First CPn is compact because it is the
image of S2n+1 under π. Since π is continuous, and S2n+1 is compact, its image is compact
under π.

Showing that CPn is Hausdorff is beyond the machinery we have so far developed in
class. I invoke a theorem of Bourbaki: If G is a compact Hausdorff group and X is a
locally compact Hausdorff space, such that G acts continuously on X, then the orbit space
X/G is Hausdorff. I assert that (C \ {0}, ∗) is a compact Hausdorff group, and Cn+1 is a
locally compact Hausdorff space, and CPn is the orbit space Cn+1/(C \ {0}, ∗). Hence CPn
is Hausdorff.

Now we show that CPn is second-countable. We know that Cn+1 is second-countable, so
it has a countable basis B. As shown in the previous lemma, the projection π : Cn+1 → CPn
is an open map. It is also continuous and surjective, so by Lemma 0.2, π(B) is a countable
basis for CPn.

Now we show that CPn is locally Euclidean of dimension 2n. For i = 1, . . . n + 1, let
Ũi ⊂ Cn+1 be the set

Ũi = {(z1, . . . zn+1 : zi 6= 0}

and define Ui = π(Ũi) ⊂ CPn. Because Ũi is a saturated open set, Ui is open and π|Ũi
: Ũi →

Ui is a quotient map. Define φi : Ui → Cn by

φi[z] = φi[z
1, . . . zn+1] =

(
z1

zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . .

zn+1

zi

)
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The map φi is well defined, because φi[az] = φi[z] for a ∈ C\{0}, as the following calculation
shows.

φi[az] = φi[az
1, . . . azn+1] =

(
az1

azi
, . . . ,

azi−1

azi
,
azi+1

azi
, . . .

azn+1

azi

)
= φi[z]

Furthermore, φi ◦ (π|Ũi
) : Ũi → Cn is continuous, so φi is continuous by Theorem A.27.

Actually, φi is a homeomorphism, because it has the continuous inverse

φ−1i (z1, . . . zn) = [z1, . . . zi−1, 1, zi, . . . zn]

To verify that these are inverses, notice that

φi ◦ φ−1i (z1, . . . zn) = φ[z1, . . . zi−1, 1, zi, . . . zn] = (z1, . . . zi−1, zi, . . . zn)

φ−1i ◦ φi[z1, . . . zn+1] = φ−1i

(
z1

zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . .

zn+1

zi

)
=

[
z1

zi
, . . . ,

zi−1

zi
,
zi

zi
,
zi+1

zi
, . . .

zn+1

zi

]
=

[
(z1, . . . zn+1)

zi

]
= [z1, . . . zn+1]

Since the sets U1, . . . Un+1 cover CPn, this shows that every point in CPn has a neighborhood
Ui that is homeomorphic to φ(Ui) ⊂ Cn. But the identification

ψ : (x1 + iy1, . . . , xn + iyn)→ (x1, y1, . . . xn, yn)

is a homeomorphism between Cn and R2n. Let Wi = φi◦π(Ui). Then φi◦ψ : Ui → Wi ⊂ R2n

is a homeomorphism. Since the collection of Ui cover CPn, this shows that CPn is locally
Euclidean of dimension 2n.

Now we show how to put a smooth structure on CPn. As shown above, (Ui, φi ◦ ψ) are
charts for CPn. We just need to show that the transition map (φi ◦ ψ) ◦ (φj ◦ ψ)−1 is a
diffeomorphism.

(φi ◦ ψ) ◦ (φj ◦ ψ)−1) = φ ◦ ψ ◦ ψ−1 ◦ φ−1j = φi ◦ φ−1j

This composition, φi ◦ φ−1j , is shown to be a diffeomorphism in Example 1.33 of Lee.
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