## Homework 2 Geometry

Joshua Ruiter

April 8, 2018

**Proposition 0.1** (Exercise A.46). Let X, Y be topological spaces.

- 1. If  $f: X \to Y$  is continuous and X is compact, then f(X) is compact.
- 2. If X is compact and  $f: X \to \mathbb{R}$  is continuous, then f is bounded and attains its maximum and minimum values on X.
- 3. Every closed subset of a compact spaces is compact.
- 4. Every compact subset of a Hausdorff space is closed.

*Proof.* First we prove (1). Let  $f: X \to Y$  be continuous and X be compact. Let  $\{U_{\alpha}\}_{{\alpha} \in A}$  be an open cover of f(X). Then

$$f(X) \subset \bigcup_{\alpha} U_{\alpha} \implies f^{-1}(f(X)) \subset f^{-1}\left(\bigcup_{\alpha} U_{\alpha}\right)$$

Since  $X \subset f^{-1}(f(X))$  and  $f^{-1}(f(X)) \subset X$ , these sets are equal. Note also that the preimage of a union is the union of preimages, so

$$X \subset \bigcup_{\alpha} f^{-1}(U_{\alpha})$$

Since f is continuous  $\{f^{-1}(U_{\alpha})\}_{{\alpha}\in A}$  is an open cover of X. Since X is compact, there is a finite subcover of X,  $\{f(U_i)\}_{i=1}^n$ . Then

$$X \subset \bigcup_{i=1}^n f^{-1}(U_i) \implies f(X) \subset f\left(\bigcup_{i=1}^n f^{-1}(U_i)\right) = \bigcup_{i=1}^n f(f^{-1}(U_i)) \subset \bigcup_{i=1}^n U_i$$

since  $f(f^{-1}(U_i)) \subset U_i$  for each i. Thus  $\{U_i\}_{i=1}^n$  is an open cover for f(X). Hence every open cover of f(X) can be reduced to a finite subcover, so f(X) is compact.

Now we prove (2). Let  $f: X \to \mathbb{R}$  be continuous and X be compact. Then by (1),  $f(X) \subset \mathbb{R}$  is compact. By the Heine-Borel theorem, f(X) is closed and bounded, thus f is bounded. Since f(X) is closed, it includes all limit points, in particular, it includes  $\sup f(X)$  and  $\inf f(X)$ . Thus f attains its maximum and minimum values on X.

Now we prove (3). Let X be a compact space and let  $C \subset X$  be closed. Let  $\{U_{\alpha}\}_{{\alpha}\in A}$ . Then  $\{U_{\alpha}\}\cup (X\setminus C)$  is an open cover for X, so it has a finite subcover (by compactness of X). Such a subcover must include at most finitely many  $U_{\alpha}$ ; index the remaining  $U_{\alpha}$  by i as  $\{U_i\}_{i=1}^n$ . We claim that  $\{U_i\}$  is a cover for C, since the only other possible set in this finite subcover for X is  $X\setminus C$ , which has empty intersection with C. Hence  $C\subset \bigcup_{i=1}^n U_i$ . Hence  $\{U_i\}$  is a finite subcover of C of the original cover  $\{U_{\alpha}\}$ , so any open cover of C has a finite subcover. Hence C is compact.

Now we prove (4). Let X be a Hausdorff topological space, and let  $A \subset X$  be compact. We will show that A is closed by showing that  $X \setminus A$  is open. Let  $x \in X \setminus A$ . Then for each  $a \in A$ , there exist open neighborhoods  $U_a, V_a$  such that  $a \in U_a, x \in V_a, U_a \cap V_a = \emptyset$  (by Hausdorff property of X). Then  $A \subset \bigcup_{a \in A} U_a$ , so  $\{U_a\}$  is an open cover for A, so we can find a finite subcover  $\{U_{a_i}\}_{i=1}^n$  (by compactness of A). Let  $V = \bigcap_{i=1}^n V_{a_i}$ . Then V and A are disjoint, since

$$y \in V \implies \forall i, y \in V_{a_i} \implies \forall i, y \notin U_{a_i} \implies y \notin \bigcup_i U_{a_i} \implies y \notin A$$

Thus  $V \cap A = \emptyset$ . And V is open, since it is a finite intersection of open sets. Finally, V contains X since each  $V_a$  contains x. Hence V is an open neighborhood of x contained within  $X \setminus A$ . Since x was arbitrary, this means that  $X \setminus A$  is open, hence A is closed.  $\square$ 

**Lemma 0.2** (for Exercise 1-3). Let  $\phi: X \to Y$  be an open, continuous, and surjective map and  $\mathcal{B}$  a basis for X. Then  $\phi(\mathcal{B})$  is a basis for Y.

*Proof.* Let  $\mathcal{B} = \{B_{\alpha}\} \alpha \in A$ . Then  $\bigcup_{\alpha} B_{\alpha} = X$  and each  $U \subset X$  open can be expressed as  $\bigcup_{i \in I} B_i$ . Then

$$Y = \phi(X) = \phi\left(\bigcup_{\alpha} B_{\alpha}\right) = \bigcup_{\alpha} \phi(B_{\alpha})$$

Thus the collection  $\{\phi(B_{\alpha})\}_{{\alpha}\in A}$  covers Y. Let  $V\subset Y$  be open. Then  $\phi^{-1}(V)\subset X$  is open, so

$$\phi^{-1}(V) = \bigcup_{i \in I} B_i$$
$$\phi(\phi^{-1}(V)) = \phi\left(\bigcup_{i \in I} B_i\right)$$
$$V = \bigcup_{i \in I} \phi(B_i)$$

Thus V can be written as a union of  $B_i$ .

**Proposition 0.3** (Exercise 1-3). A locally Euclidean Hausdorff space is a topological manifold if and only if it is  $\sigma$ -compact.

*Proof.* First suppose that X is a topological manifold (then X is locally Euclidean and Hausdorff by definition). We need to express X as a union of countably many compact subspaces to show that it is  $\sigma$ -compact. By Lemma 1.10, X has a countable basis of precompact coordinate balls,  $\{U_i\}_{i=1}^{\infty}$ . For each i, the closure of  $U_i$  is compact and contains  $U_i$ , so the collection  $\{\overline{U_i}\}_{i=1}^{\infty}$  is a countable cover of X by compact subspaces. Hence X is  $\sigma$ -compact.

Now suppose that X is a  $\sigma$ -compact, locally Euclidean Hausdorff space. We must show that X is second-countable, that is, we must find a countable basis for X. Since X is  $\sigma$ -compact, we can write X as a union of countably many compact subspaces,  $X = \bigcup_{i=1}^{\infty} K_i$ . For each  $p \in X$ , there is a local chart  $(U_p, \phi_p)$  with  $p \in U_p$  and where  $U_p$  is homeomorphic to the unit ball in  $\mathbb{R}^n$  (because X is locally Euclidean). For each i, the union  $\bigcup_{p \in X} U_p$  is an open cover of  $K_i$ , so we can find a finite subcover (because  $K_i$  is compact),

$$K_i \subset \bigcup_{j=1}^n U_{ij}$$

Since  $\mathbb{R}^n$  is second-countable, there is a countable basis  $\{B_{ijk}\}_{k=1}^{\infty}$  for each  $\phi_{ij}(U_{ij}) \subset \mathbb{R}^n$ . Let  $V_{ijk} = \phi_{ij}^{-1}(B_{ijk})$ . Notice then that  $U_{ij} \subset \bigcup_k V_{ijk}$ . We claim that

$${V_{ijk}: i, j, k \ge 1}$$

is a countable basis for X. It is clearly countable. Each  $V_{ijk}$  is open since it is a preimage of an open set in  $\mathbb{R}^n$ . It is not hard to see that they cover X, since

$$X = \bigcup_{i} K_{i} \subset \bigcup_{i} \bigcup_{j} U_{ij} \subset \bigcup_{i} \bigcup_{j} \bigcup_{k} V_{ijk}$$

Finally, we need to show that any open set  $\mathcal{O} \subset X$  can be written as a union of  $V_{ijk}$ . Let  $\mathcal{O} \subset X$  be open. For all i, j, k, the set  $\mathcal{O} \cap V_{ijk}$  is open because  $V_{ijk}$  is open. Then the union

$$\bigcup_{i,j,k} (\mathcal{O} \cap V_{ijk})$$

is a union of open sets, which makes it open. It is obvious that this union is contained in  $\mathcal{O}$ . It also contains  $\mathcal{O}$ , since the  $V_{ijk}$  cover X. Thus we have

$$\mathcal{O} = \bigcup_{i,j,k} (\mathcal{O} \cap V_{ijk})$$

**Proposition 0.4** (Exercise 1-7a). Let  $N = (0,0,\ldots,1) \in S^n \subset \mathbb{R}^{n+1}$  denote the north pole and  $S = (0,0,\ldots,-1)$  be the south pole. We define the stereographic projection  $\sigma: S^n \setminus N \to \mathbb{R}^n$  by

$$\sigma(x^1, \dots x^{n+1}) = \frac{(x^1, \dots x^n)}{1 - x^{n+1}}$$

and we define  $\tilde{\sigma}(x) = -\sigma(-x)$  for  $x \in S^n \setminus S$ . Then for any  $x \in S^n \setminus N$ ,  $(\sigma(x), 0)$  is the point where the line through N and x intersects the linear subspace where  $x^{n+1} = 0$ . Similarly,  $\tilde{\sigma}(x)$  is the point where the line through S and x intersects the same subspace.

*Proof.* To show this, we show that we can write  $(\sigma(x), 0)$  as a linear combination of x - N and x. Let  $a = x^{n+1}/(1 - x^{n+1})$ . Then as a preliminary, we calculate

$$a+1 = \frac{1}{1-x^{n+1}}$$

$$a(x^{n+1}-1) + x^{n+1} = \frac{x^{n+1}(x^{n+1}-1)}{1-x^{n+1}} + x^{n+1} = -x^{n+1} + x^{n+1} = 0$$

Now we can show that  $(\sigma(x), 0) = a(x - N) + x$ .

$$a(x - N) + x = a(x^{1}, \dots x^{n+1} - 1) + (x^{1}, \dots x^{n+1})$$

$$= ((a + 1)x^{1}, \dots (a + 1)x^{n}, a(x^{n+1} - 1) + x^{n+1})$$

$$= \left(\frac{1}{1 - x^{n+1}}(x^{1}, \dots x^{n}), 0\right)$$

$$= (\sigma(x), 0)$$

Thus x, N, and  $(\sigma(x), 0)$  are collinear, and clearly  $(\sigma(x), 0)$  is in the linear subspace where  $x^{n+1} = 0$ .

Now we show that  $x, S, \tilde{\sigma}(x)$  are collinear. Now let  $a = -x^{n+1}/(1+x^{n+1})$ . Then

$$a+1 = 1/(1+x^{n+1})$$

$$a(x^{n+1}+1) + x^{n+1} = \frac{-x^{n+1}(1+x^{n+1})}{1+x^{n+1}} + x^{n+1} = -x^{n+1} + x^{n+1} = 0$$

so we can compute

$$a(x - S) + x = a(x^{1}, \dots x^{n+1} + 1) + (x^{1}, \dots x^{n+1})$$

$$= ((a + 1)x^{1}, \dots (a + 1)x^{n}, a(x^{n+1} + 1) + x^{n+1})$$

$$= \left(\frac{1}{1 + x^{n+1}}(x^{1}, \dots x^{n}), a(x^{n+1} + 1) + x^{n+1}\right)$$

$$= \frac{(x^{1}, \dots x^{n}, 0)}{1 + x^{n+1}}$$

$$= (-\sigma(-x), 0)$$

$$= (\tilde{\sigma}(x), 0)$$

Thus  $(\tilde{\sigma}(x), 0)$  is collinear with x, S.

**Proposition 0.5** (Exercise 1-7b). The stereographic projection  $\sigma$  is a bijection, with inverse  $\sigma^{-1}$  given by

$$\sigma^{-1}(x) = \sigma^{-1}(x^1, \dots x^n) = \frac{(2x^1, \dots, 2x^n, |x|^2 - 1)}{|x|^2 + 1} =$$

*Proof.* Let  $\sigma^{-1}$  be as stated above. We will show that  $\sigma \circ \sigma^{-1}$  and  $\sigma^{-1} \circ \sigma$  are the identity on their respective domains. First, let  $x \in S^n \setminus \{0\}$ . Let  $x = (x^1, \dots, x^{n+1}) \in S^n \setminus \{0\}$ . As a

preliminary calculation, we compute  $|\sigma(x)|^2$ , since this term arises in computing  $\sigma^{-1} \circ \sigma(x)$ . (Note that |x| = 1 since x is on  $S^n$ .)

$$|\sigma(x)|^2 = \frac{(x^1)^2 + \dots + (x^n)^2}{(1 - x^{n+1})^2}$$

$$= \frac{(x^1)^2 + \dots + (x^n)^2 + (x^{n+1})^2 - (x^{n+1})^2}{(1 - x^{n+1})^2}$$

$$= \frac{|x| - (x^{n+1})^2}{(1 - x^{n+1})^2}$$

$$= \frac{1 - (x^{n+1})^2}{(1 - x^{n+1})^2}$$

Now we can compute  $\sigma^{-1} \circ \sigma(x)$  directly.

$$\sigma^{-1} \circ \sigma(x) = \sigma^{-1} \left( \frac{(x^1, \dots x^n)}{1 - x^{n+1}} \right)$$

$$= \frac{(2x^1, \dots, 2x^n, (|\sigma(x)|^2 - 1)(1 - x^{n+1}))}{(|\sigma(x)|^2 + 1)(1 - x^{n+1})}$$

$$= \frac{(2x^1, \dots, 2x^n, (1 - x^{n+1}) - (1 - x^{n+1}))}{\left(\frac{1 - (x^{n+1})^2}{(1 - x^{n+1})^2} + 1\right)(1 - x^{n+1})}$$

$$= \frac{(2x^1, \dots 2x^n, 2x^{n+1}}{\frac{1 - (x^{n+1})^2}{1 - x^{n+1}} + 1 - x^{n+1}}$$

$$= \frac{(2x^1, \dots 2x^n, 2x^{n+1})}{\left(\frac{1 - (x^{n+1})^2 + (1 - x^{n+1})^2}{1 - x^{n+1}}\right)}$$

$$= \frac{(2x^1, \dots 2x^{n+1})}{\left(\frac{2 - 2x^{n+1}}{1 - x^{n+1}}\right)}$$

$$= \frac{(2x^1, \dots 2x^{n+1})}{2}$$

$$= (x^1, \dots, x^{n+1})$$

$$= x$$

Thus  $\sigma^{-1} \circ \sigma$  is the identity on  $S^n \setminus \{N\}$ . Now we will show that  $\sigma \circ \sigma^{-1}$  is the identity in

its domain. Let  $x = (x^1, \dots x^n) \subset \mathbb{R}^n \setminus \{0\}$ . Then

$$\sigma \circ \sigma^{-1}(x) = \sigma \left( \frac{(2x^1, \dots, 2x^n, |x|^2 - 1)}{|x|^2 + 1} \right)$$

$$= \frac{(2x^1, \dots, 2x^n)}{(|x|^2 + 1)(1 - \frac{|x|^2 - 1}{|x|^2 + 1})}$$

$$= \frac{(2x^1, \dots, 2x^n)}{|x|^2 + 1 - (|x|^2 - 1)}$$

$$= \frac{(2x^1, \dots, 2x^n)}{2)}$$

$$= (x^1, \dots, x^n)$$

$$= x$$

Thus  $\sigma \circ \sigma^{-1}$  is the identity on  $\mathbb{R}^n \setminus \{0\}$ . Hence  $\sigma$  is a bijection.

**Proposition 0.6** (Exercise 1.17c). The atlas consisting of the two charts  $\sigma, \tilde{\sigma}$  defines a smooth structure on  $S^n$ .

*Proof.* To show this, we just need to compute the transition map  $\tilde{\sigma} \circ \sigma^{-1} : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}$ .

$$\begin{split} \tilde{\sigma} \circ \sigma^{-1}(u^1, \dots u^n) &= \tilde{\sigma} \left( \frac{(2u^1, \dots, 2u^n, |u|^2 - 1)}{|u|^2 + 1} \right) \\ &= -\sigma \left( (-1) \left( \frac{(2u^1, \dots, 2u^n, |u|^2 - 1)}{|u|^2 + 1} \right) \right) \\ &= -\sigma \left( \frac{(2u^1, \dots, 2u^n, |u|^2 - 1)}{-|u|^2 - 1} \right) \\ &= -\frac{(2u^1, \dots, 2u^n)}{(|u|^2 + 1) + (|u|^2 - 1)} \\ &= \frac{(2u^1, \dots, 2u^n)}{2|u|^2} \\ &= \frac{u}{|u|^2} \end{split}$$

Thus this transition map is a diffeomorphism, with itself being the inverse, because

$$(\tilde{\sigma} \circ \sigma^{-1}) \circ (\tilde{\sigma} \circ \sigma^{-1})(u) = \tilde{\sigma} \circ \sigma^{-1} \left(\frac{u}{|u|^2}\right) = \frac{\frac{u}{|u|^2}}{\left|\frac{u}{|u|^2}\right|^2} = \frac{\frac{u}{|u|^2}}{\frac{1}{|u|^2}} = u$$

Thus  $\sigma, \tilde{\sigma}$  are compatible charts that cover  $S^n$ , so they are a smooth atlas. By Proposition 1.17, we can extend this atlas to a maximal smooth atlas, which give a smooth structure on  $S^n$ .

**Proposition 0.7** (Exercise 1-7d). The smooth structure on  $S^n$  induced by the stereographic projection (and the projection excluding the south pole) is the same as the structure induced by the charts  $\{U_i^{\pm}\}$  given in Example 1.31.

*Proof.* We just need to show that the union of these two smooth atlases is a smooth atlas; that is, we need to show that the stereographic projection  $\sigma$  and the other projection  $\tilde{\sigma}$  are compatible with the charts  $\{U_i^{\pm}, \phi_i^{\pm}\}$ . To do this, we need to show that the transition maps  $\sigma \circ (\phi_i^{\pm})^{-1}, \phi_i^{\pm} \circ \sigma^{-1}, \tilde{\sigma} \circ (\phi_i^{\pm})^{-1}$ , and  $\phi_i^{\pm} \circ \tilde{\sigma}^{-1}$  are all smooth. We will just show that these are smooth for the charts  $U_i^+$ , but essentially the same calculations hold for  $U_i^-$ .

First, let  $x = (x^1, \dots x^n) \in \phi_i^{\pm}(U_i^+ \cap S^n \setminus N)$ .

$$\sigma \circ (\phi_i^{\pm})^{-1}(x^1, \dots, x^n) = \sigma(x^1, \dots, x^{i-1}, (1 - |x|^2)^{1/2}, x^i, \dots x^n)$$
$$= \frac{(x^1, \dots x^{i-1}, (1 - |x|^2)^{1/2}, x^i, \dots x^{n-1})}{1 - x^n}$$

This is smooth as long as  $x^n \neq 1$ , but  $x^n \neq 1$  on the domain because the north pole N is excluded. Thus  $\sigma \circ (\phi_i^{\pm})^{-1}$  is smooth. Now let  $x = \phi_i^{\pm}(U_i^+ \cap S^n \setminus \{S\})$ .

$$\tilde{\sigma} \circ (\phi_i^{\pm})^{-1}(x^1, \dots x^n) = -\sigma(-x^1, \dots - x^{i-1}, -(1-|x|^2)^{1/2}, -x^i, \dots - x^n)$$

$$= (-1)\frac{(-x^1, \dots, -x^{i-1}, -(1-|x|^2)^{1/2}, -x^i, \dots, -x^{n-1})}{1+x^n}$$

This is smooth as long as  $x^n \neq -1$ , but this possibility is excluded because the south pole is not in the domain. Thus  $\tilde{\sigma} \circ (\phi_i^{\pm})^{-1}$  is smooth. Now let  $x \in \sigma(U_i^+ \cap S^n \setminus \{N\})$ .

$$\phi_i^{\pm} \circ \sigma^{-1}(x) = \phi_i^{\pm} \left( \frac{(2x^1, \dots, 2x^n, |x|^2 - 1)}{|x|^2 + 1} \right)$$
$$= \frac{(2x^1, \dots, 2x^{i-1}, 2x^{i+1}, \dots, 2x^n, |x|^2 - 1)}{|x|^2 + 1}$$

This is smooth as long as  $|x|^2 \neq -1$ , but  $|x|^2 \geq 0$ . Thus  $\phi_i^{\pm} \circ \sigma^{-1}$  is smooth. Finally, let  $x \in \tilde{\sigma}(U_i^+ \cap S^n \setminus \{S\})$ .

$$\begin{split} \phi_i^{\pm} \circ \tilde{\sigma}^{-1}(x) &= \phi_i^{\pm}(-\sigma^{-1}(-x)) \\ &= \phi_i^{\pm} \left( (-1) \frac{-2x^1, \dots, -2x^n, |x|^2 - 1}{|x|^2 + 1} \right) \\ &= \frac{(2x^1, \dots, 2x^{i-1}, 2x^{i+1}, \dots, 2x^n, -|x|^2 + 1)}{|x|^2 + 1} \end{split}$$

This is also smooth as long as  $|x|^2 \neq -1$ , it is smooth on its whole domain.

We have shown that each chart  $(U_i^+, \phi_i^\pm)$  is compatible with the charts  $(\sigma, S^n \setminus \{N\})$ ,  $(\tilde{\sigma}, S^n \setminus \{S\})$ . These arguments easily extend to show compatibility of  $(U_i^-, \phi_i^\pm)$  with  $\sigma, \tilde{\sigma}$ . Thus the smooth atlases are compatible, so they induce the same smooth structure by Proposition 1.17b.

**Proposition 0.8** (Exercise 1-8). Let  $U \subset S^1$ . There exists an angle function  $\theta : U \to \mathbb{R}$  satisfying  $e^{i\theta(z)} = z$  for  $z \in U$  if and only if  $U \neq S^1$ . Furthermore, when such an angle function exists,  $(U, \theta)$  is a smooth coordinate chart for  $S^1$  with its standard smooth structure.

Proof. First suppose that  $U = S^1$ . Then U is connected and locally path-connected. Let  $\pi : \mathbb{R} \to S^1$  be the covering map  $t \mapsto e^{2\pi i t}$ , and let  $\iota : U \hookrightarrow S^1$  be the inclusion map (note that  $\iota$  is continuous). Then the induced homomorphism  $\pi_* : \pi_1(\mathbb{R}) \to \pi_1(S^1)$  is trivial, since it maps the trivial group into  $\mathbb{Z}$ . Since  $\iota$  is actually the identity map, it induces an isomorphism  $\iota_* : \pi_1(U) \to \pi_1(S^1)$ , so  $\iota_*(\pi_1(U)) = \mathbb{Z}$ .

Hence the inclusion  $\iota_*(\pi_1(U)) \subset \pi_*(\pi_1(\mathbb{R}))$  fails, so by Proposition A.78 (Lifting Criterion), there does not exist a continuous function  $\theta: U \to \mathbb{R}$  such that  $\theta(1) = 1$ , and hence no such  $\theta$  such that  $e^{i\theta(1)} = 1$ . (If  $e^{i\theta(1)} = 1$ , then we must have  $i\theta(1) = 2\pi k$  for some  $k \in \mathbb{Z}$ , and  $2\pi k$  is can only be a real scalar multiple of i if k = 0, hence  $\theta(1)$  must be zero to satisfy  $e^{i\theta(1)} = 1$ .) Thus if  $U = S^1$ , then no angle function exists.

Now suppose that  $U \neq S^1$  is an open subset not equal to  $S^1$ . We must construct a continuous function  $\theta: U \to \mathbb{R}$ . Let  $p_0 \in S^1 \setminus U$ . Then there exists (not unique)  $t_0 \in \mathbb{R}$  such that  $e^{it_0} = p_0$ . Then for every  $p \in S^1 \setminus \{p_0\}$ , there exists a unique  $t \in (t_0, t_0 + 2\pi)$  such that  $e^{it} = p$ . Set  $\tilde{\theta}(p) = t$ , so we have defined a function  $\tilde{\theta}: S^1 \setminus \{p_0\} \to \mathbb{R}$ , and by construction,  $e^{i\tilde{\theta}(p)} = e^{it} = p$ . We can then set  $\theta = \tilde{\theta}_U: U \to \mathbb{R}$ .

We need to show that  $\theta$  is continuous. Let  $(x_n)_{n=1}^{\infty}$  be a sequence in U with limit  $x \in U$ , that is,  $x_n \to x$ . Set  $t_n = \theta(x_n)$  and  $t = \theta(x)$ . Then  $x_n = e^{it_n}$  and  $x = e^{it}$ . Suppose (as an RAA hypothesis) that  $t_n$  does not converge to t. Since  $t_n \in (t_0, t_0 + 2\pi)$ ,  $t_n$  is a bounded sequence, so by the Bolzano-Weierstrass Theorem,  $t_n$  has a convergent subsequence  $t_{n_k}$ , with limit  $s \neq t$ . Since  $s \in [t_0, t_0 + 2\pi]$  and  $t \in (t_0, t_0 + 2\pi)$  and  $s \neq t$ , it follows that  $e^{is} \neq e^{it}$ . But since  $t_{n_k} \to s$ , we have  $e^{it_{n_k}} \to e^{is}$ . Then since  $x_{n_k} = e^{it_{n_k}}$ , we have  $x_{n_k} \to e^{is} \neq x$ . This is a contradiction, since  $x_n \to x$  and  $x_n$  has a unique limit (by Exercise A.11). Thus  $\theta$  is continuous.

Now we show that any continuous angle function  $\theta: U \to \mathbb{R}$  is a smooth coordinate chart for  $S^1$  with it standard smooth structure. Let  $\theta: U \to \mathbb{R}$  be an angle function, that is,  $e^{i\theta(p)} = p$  for  $p \in U$ . Then  $\theta$  must be injective, because

$$\theta(p) = \theta(q) \implies e^{i\theta(p)} = e^{i\theta(q)} \implies p = q$$

Furthermore, for  $x \in \theta(U)$ ,  $\theta(e^{ix}) = \theta(\cos x + i \sin x) = x$ , so  $\theta^{-1}(x) = e^{ix}$ . Let  $\sigma: S^1 \to \mathbb{R}$  be the stereographic projection given by  $x_1 + ix_2 = (x_1, x_2) \mapsto \frac{x_1}{1 - x_2}$ . Then we compute the transition maps  $\sigma \circ \theta^{-1}: \theta(U) \to \sigma(U)$ ,  $\theta \circ \sigma^{-1}: \sigma(U) \to \theta(U)$ .

$$\sigma \circ \theta^{-1}(x) = \sigma(\cos x + i\sin x) = \frac{\cos x}{1 - \sin x}$$
$$\theta \circ \sigma^{-1}(x) = \theta\left(\frac{(2x, x^2 - 1)}{(x^2 + 1)}\right) = \theta\left(\frac{2x}{x^2 + 1} + i\frac{x^2 - 1}{x^2 + 1}\right) = \tan^{-1}\left(\frac{x^2 - 1}{2x}\right)$$

Both of these are diffeomorphisms on  $\theta(U) \subset (t_0, t_0 + 2\pi)$ , hence  $\theta$  is a smooth coordinate chart for  $S^1$  with its standard smooth structure.

**Lemma 0.9** (for Exercise 1-9). The natural projection  $\pi: \mathbb{C}^{n+1} \to \mathbb{CP}^n$  is an open map.

*Proof.* Let  $U \subset \mathbb{C}^{n+1}$  be open. First we claim that for  $\lambda \in \mathbb{C}$  with  $\lambda \neq 0$ , the dilation  $\lambda U$ , defined as

$$\lambda U = \{\lambda u : u \in U\}$$

is open. Let  $z \in \lambda U$ . Then  $z = \lambda \omega$  for some  $\omega \in U$ . Since U is open, there exists  $\epsilon > 0$  such that  $B(\omega, \epsilon) \subset U$ . We claim that  $B(z, |\lambda|\epsilon) \subset \lambda U$ . To see this, let  $c \in B(z, |\lambda|\epsilon)$ , so then

$$|c-z| = |c-\lambda\omega| = |\lambda(c/\lambda - \omega)| = |\lambda||c/\lambda - \omega| < |\lambda|\epsilon \implies |c/\lambda - \omega| < \epsilon$$

Thus

$$c/\lambda \in B(\omega, \epsilon) \subset U \implies \lambda(c/\lambda) = c \subset \lambda U$$

so we establish  $B(z, |\lambda|\epsilon) \subset \lambda U$ , and thus  $\lambda U$  is open. Now we claim that

$$\pi^{-1}(\pi(U)) = \bigcup_{\lambda \in \mathbb{C} \setminus \{0\}} \lambda U$$

Let  $z \in \pi^{-1}(\pi(U))$ . Then  $\pi(z) = \pi(\omega)$  for some  $\omega \in U$ , and thus  $z = \lambda \omega$  for some  $\lambda$ , hence  $\pi^{-1}(\pi(U))$  is contained in the union of all  $\lambda U$ . Now suppose that  $z \in \lambda U$ . Then  $z = \lambda \omega$  for some  $\omega \in U$ , so  $\pi(z) = \pi(\omega)$ , so  $z \in \pi^{-1}(\pi(\omega))$ , hence  $z \in \pi^{-1}(\pi(U))$ . Thus we have two way containment, so these sets are equal.

We already showed that each  $\lambda U$  is open, so the union is open. Hence  $\pi^{-1}(\pi(U))$  is open for every open  $U \subset \mathbb{C}^{n+1}$ . Since  $\pi$  is continuous,  $\pi^{-1}(X)$  is open if and only if X is open, so  $\pi^{-1}(\pi(U))$  open implies  $\pi(U)$  open. Hence  $\pi(U)$  is open for every  $U \subset \mathbb{C}^{n+1}$  open, so  $\pi$  is an open map.

**Proposition 0.10** (Exercise 1-9).  $\mathbb{CP}^n$  is a compact 2n-dimensional topological manifold, and we can give it a smooth structure.

*Proof.* Let  $\pi: \mathbb{C}^{n+1} \to \mathbb{CP}^n$  be the natural projection. First  $\mathbb{CP}^n$  is compact because it is the image of  $S^{2n+1}$  under  $\pi$ . Since  $\pi$  is continuous, and  $S^{2n+1}$  is compact, its image is compact under  $\pi$ .

Showing that  $\mathbb{CP}^n$  is Hausdorff is beyond the machinery we have so far developed in class. I invoke a theorem of Bourbaki: If G is a compact Hausdorff group and X is a locally compact Hausdorff space, such that G acts continuously on X, then the orbit space X/G is Hausdorff. I assert that  $(\mathbb{C} \setminus \{0\}, *)$  is a compact Hausdorff group, and  $\mathbb{C}^{n+1}$  is a locally compact Hausdorff space, and  $\mathbb{CP}^n$  is the orbit space  $\mathbb{C}^{n+1}/(\mathbb{C} \setminus \{0\}, *)$ . Hence  $\mathbb{CP}^n$  is Hausdorff.

Now we show that  $\mathbb{CP}^n$  is second-countable. We know that  $\mathbb{C}^{n+1}$  is second-countable, so it has a countable basis  $\mathcal{B}$ . As shown in the previous lemma, the projection  $\pi:\mathbb{C}^{n+1}\to\mathbb{CP}^n$  is an open map. It is also continuous and surjective, so by Lemma 0.2,  $\pi(\mathcal{B})$  is a countable basis for  $\mathbb{CP}^n$ .

Now we show that  $\mathbb{CP}^n$  is locally Euclidean of dimension 2n. For  $i=1,\ldots n+1$ , let  $\tilde{U}_i\subset\mathbb{C}^{n+1}$  be the set

$$\tilde{U}_i = \{(z^1, \dots z^{n+1} : z^i \neq 0\}$$

and define  $U_i = \pi(\tilde{U}_i) \subset \mathbb{CP}^n$ . Because  $\tilde{U}_i$  is a saturated open set,  $U_i$  is open and  $\pi|_{\tilde{U}_i} : \tilde{U}_i \to U_i$  is a quotient map. Define  $\phi_i : U_i \to \mathbb{C}^n$  by

$$\phi_i[z] = \phi_i[z^1, \dots, z^{n+1}] = \left(\frac{z^1}{z^i}, \dots, \frac{z^{i-1}}{z^i}, \frac{z^{i+1}}{z^i}, \dots, \frac{z^{n+1}}{z^i}\right)$$

The map  $\phi_i$  is well defined, because  $\phi_i[az] = \phi_i[z]$  for  $a \in \mathbb{C} \setminus \{0\}$ , as the following calculation shows.

$$\phi_i[az] = \phi_i[az^1, \dots az^{n+1}] = \left(\frac{az^1}{az^i}, \dots, \frac{az^{i-1}}{az^i}, \frac{az^{i+1}}{az^i}, \dots \frac{az^{n+1}}{az^i}\right) = \phi_i[z]$$

Furthermore,  $\phi_i \circ (\pi|_{\tilde{U}_i}) : \tilde{U}_i \to \mathbb{C}^n$  is continuous, so  $\phi_i$  is continuous by Theorem A.27. Actually,  $\phi_i$  is a homeomorphism, because it has the continuous inverse

$$\phi_i^{-1}(z^1, \dots z^n) = [z^1, \dots z^{i-1}, 1, z^i, \dots z^n]$$

To verify that these are inverses, notice that

$$\phi_{i} \circ \phi_{i}^{-1}(z^{1}, \dots z^{n}) = \phi[z^{1}, \dots z^{i-1}, 1, z^{i}, \dots z^{n}] = (z^{1}, \dots z^{i-1}, z^{i}, \dots z^{n})$$

$$\phi_{i}^{-1} \circ \phi_{i}[z^{1}, \dots z^{n+1}] = \phi_{i}^{-1} \left(\frac{z^{1}}{z^{i}}, \dots, \frac{z^{i-1}}{z^{i}}, \frac{z^{i+1}}{z^{i}}, \dots \frac{z^{n+1}}{z^{i}}\right)$$

$$= \left[\frac{z^{1}}{z^{i}}, \dots, \frac{z^{i-1}}{z^{i}}, \frac{z^{i}}{z^{i}}, \frac{z^{i+1}}{z^{i}}, \dots \frac{z^{n+1}}{z^{i}}\right]$$

$$= \left[\frac{(z^{1}, \dots z^{n+1})}{z^{i}}\right]$$

$$= [z^{1}, \dots z^{n+1}]$$

Since the sets  $U_1, \ldots U_{n+1}$  cover  $\mathbb{CP}^n$ , this shows that every point in  $\mathbb{CP}^n$  has a neighborhood  $U_i$  that is homeomorphic to  $\phi(U_i) \subset \mathbb{C}^n$ . But the identification

$$\psi: (x^1 + iy^1, \dots, x^n + iy^n) \to (x^1, y^1, \dots, x^n, y^n)$$

is a homeomorphism between  $\mathbb{C}^n$  and  $\mathbb{R}^{2n}$ . Let  $W_i = \phi_i \circ \pi(U_i)$ . Then  $\phi_i \circ \psi : U_i \to W_i \subset \mathbb{R}^{2n}$  is a homeomorphism. Since the collection of  $U_i$  cover  $\mathbb{CP}^n$ , this shows that  $\mathbb{CP}^n$  is locally Euclidean of dimension 2n.

Now we show how to put a smooth structure on  $\mathbb{CP}^n$ . As shown above,  $(U_i, \phi_i \circ \psi)$  are charts for  $\mathbb{CP}^n$ . We just need to show that the transition map  $(\phi_i \circ \psi) \circ (\phi_j \circ \psi)^{-1}$  is a diffeomorphism.

$$(\phi_i \circ \psi) \circ (\phi_i \circ \psi)^{-1}) = \phi \circ \psi \circ \psi^{-1} \circ \phi_i^{-1} = \phi_i \circ \phi_i^{-1}$$

This composition,  $\phi_i \circ \phi_j^{-1}$ , is shown to be a diffeomorphism in Example 1.33 of Lee.